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In this work, closed form expressions for the calculation of the Kratzer potential integrals
are obtained by means of a procedure based on the algebraic representation of the Kratzer
eigenfunctions along with the usual ladder properties and commutation relations. For that,
the exact formulae for matrix elements are achieved with the aid of the raising operator
applied repeatedly over the ket and with the lowering operator acting reiteratively over the
bra for the symmetric closed form expression. Comparatively, the formulae algebraically
obtained in this work are quite similar to the ones derived from usual methods involving the
evaluation of integrals. Besides, when considering some particular cases the results show
that the closed formulae that comes from the algebraic procedure are an improvement to the
closed form expressions already published.

1. Introduction

Among many two particle interaction models, the Kratzer potential [7] by itself
constitutes one of the most interesting alternatives because it can be exactly solved
for the general case of rotation states different from zero. Recently, this potential has
been used in studies that utilize the Kratzer wavefunctions as diatomic molecule basis
sets [12] and in the evaluation of pseudo two-center matrix elements for undisplaced
potentials. With respect to the latter, the closed form expressions for the calculation
of the Kratzer potential integrals have been obtained analytically with the aid of the
expansion representation of the Laguerre polynomials directly involved [1]. Thus,
such equations contain as particular case overlap integrals that are used in the cal-
culations of the Franck–Condon factors for potentials with different depths, although
undisplaced [14].

On the other hand, recently Morales et al. [9], using the algebraic representation
of the Kratzer potential, have proposed a set of matrix elements recurrence formulae for
the evaluation of the Kratzer potential integrals with which they show the usefulness of
ladder operator approaches. However, as far as we know such algebraic representation
method has not been used to obtain the corresponding closed formulation of Kratzer
matrix elements. For that, the purpose of the present work is to use the creation
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and annihilation operators associated to the Kratzer potential wavefunctions to obtain
alternative closed form expressions for the calculation of multipolar integrals, as will
be shown next.

2. Closed formulation of Kratzer potential integrals

The algebraic procedures require the knowledge of ladder operators associated
with the potential under study. In this respect, there are several options how to obtain
creation and annihilation operators associated with any potential wavefunction, such
as the factorization method [5], by quantizing classical dynamical variables [8], by
using the algebraic representation of the orthogonal polynomials directly involved [11]
and by an alternative approach [10] to the Infeld and Hull procedure. In any case,
the raising and lowering operators, shifting ν, for Kratzer potential wavefunctions are
given by [9]

ϕ±ν = −(ν + λ) + σx∓ x d
dx

, (1)

where σ = γ2/(ν+λ), γ2 = (2ma2)/~2D and the other parameters are defined in [3].
The above ladder operators satisfy the following properties:

ϕ±ν |ν,λ〉 = ρ±ν |ν ± 1,λ〉, (2)

〈ν ′,λ′|ϕ±ν′∓1 = ρ±ν′∓1〈ν
′ ± 1,λ′|, (3)

where ρ±ν = −[(ν + 1/2± 1/2)(ν + 2λ− 1/2± 1/2)]1/2, and fulfill the commutation
relations [

ϕ±ν ,xk
]

= ∓kxk. (4)

Thus, accordingly with the creation properties of ϕ−ν′ specified in equation (3) we get

〈0,λ′|ϕ−1 ϕ
−
2 ϕ
−
3 · · · ϕ

−
ν′ = ρ−1 ρ

−
2 ρ
−
3 · · · ρ

−
ν′〈ν

′,λ′| (5)

for which, using the commutation relation of equation (4), the xk integral can be
written as

〈ν ′,λ′|xk|ν,λ〉 =

(
ν′∏
i=1

ρ′−i

)−1

〈0,λ′|
(
ν′−1∏
i=1

ϕ′−i

)
xk
(
k + ϕ−ν′

)
|ν,λ〉, (6)

where

ν′∏
i=1

ρ′−i = (−1)ν
′
[
ν ′!Γ(ν ′ + 2λ′)

Γ(2λ′)

]1/2

. (7)
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At this point, by transposing xk and ϕ′−i repeatedly ν times in above equation one
obtains

〈ν ′,λ′|xk|ν,λ〉 =

(
ν′∏
i=1

ρ′−i

)−1

〈0,λ′|xk
ν′∏
i=1

(
k + ϕ′−i

)
|ν,λ〉. (8)

Also, in order to have in the above equation the appropiate ladder operator acting
on the ket, we use the identity [9]

ϕ′−i = ϕ−i + (λ− λ′) + (σ′ − σ)x, (9)

where σ′ = γ2/(ν ′ + λ′) to obtain

〈ν ′,λ′|xk|ν,λ〉 =

(
ν′∏
i=1

ρ′−i

)−1

〈0,λ′|xk
ν′∏
i=1

(
ϒx+ R

−
i

)
|ν,λ〉, (10)

where ϒ = σ′−σ and R
−
i = k+λ−λ′+ϕ−i . That is, due to the fact that the operator

R
−
i has the properties

R
−
i ± a = R

−
i∓a, (11)

R
−
i x

k = xkR−i−k (12)

and

aR−i + bR−j = (a+ b)R−ai+bj
a+b

, (13)

we can write

ν′∏
i=1

(
ϒx+ R

−
i

)
=
ν′−1∏
i=1

(
ϒx+ R

−
i

)(
ϒx+ R

−
ν′
)

=
ν′∑
α=0

Cν
′
α (ϒx)ν

′−α
α∏
k=1

R
−
k , (14)

where

Cν
′
α =

ν ′!
α!(ν ′ − α)!

are the usual binomial coefficients. It should be noticed that one of the products is
eliminated by choosing properly the index. In fact, the following holds:

0∏
i=1

(
ϒx+ R

−
i

)
= 1, (15)
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for which, with α = p, equation (10) becomes

〈ν ′,λ′|xk|ν,λ〉=
(

ν′∏
i=1

ρ′−i

)−1

〈0,λ′|xk

×
ν′∑
p=0

Cν
′
p (ϒx)ν

′−p
p∏
l=1

(
k + λ− λ′ − l + ϕ−0

)
|ν,λ〉. (16)

Thus, with the purpose to have a suitable annihilation operator acting on the ket,
we use Vandermonde’s formula [6]

i∏
µ=1

(a+ b− µ) =
i∑

j=0

Cjj

i−j∏
µ=1

(a− i− 1 + µ)
j∏

w=1

(b− 1 + w) (17)

along with the property ϕ−0 = ν+ϕ−ν in the operator product of equation (16) in order
to get

p∏
l=1

(
k+λ−λ′+ν−l+ϕ−ν

)
=

p∑
α=0

Cpα

p−α∏
l=1

(
k+λ−λ′+ν−p−1+l

) α∏
w=1

ϕ−ν−w+1. (18)

On the other hand, according to the properties of ϕ−ν on the ket

α∏
w=1

ϕ−ν−w+1|ν,λ〉 =
α−1∏
w=0

ϕ−ν−w|ν,λ〉 =
α−1∏
w=0

ρ−ν−w|ν − α,λ〉 (19)

one can write equation (16) as

〈ν ′,λ′|xk|ν,λ〉=
(

ν′∏
i=1

ρ′−i

)−1
ν′∑
p=0

p∑
α=0

Cν
′
p C

p
αϒν

′−p
p−α∏
l=1

(
k + λ− λ′ + ν − p− 1 + l

)
×

α−1∏
w=0

ρ−ν−w〈0,λ′|xk+ν′−p|ν − α,λ〉, (20)

where

α−1∏
w=0

ρ−ν−w = (−1)α
[

ν!Γ(ν + 2λ)
Γ(ν + 2λ− α)(ν − α)!

]1/2

. (21)

In a similar way, instead of equation (5) one can now use

ϕ+
0 ϕ

+
1 ϕ

+
2 · · ·ϕ

+
ν−1|0,λ〉 = ρ+

0 ρ
+
1 ρ

+
2 · · · ρ

+
ν−1|ν,λ〉 (22)
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in order to get the symmetric relationship

〈ν ′,λ′|xk|ν,λ〉 =

(
ν∏
i=1

ρ+
i−1

)−1 ν∑
p=0

p∑
α=0

CνpC
p
α(−ϒ)ν−p

×
p−α∏
l=1

(
k + λ′ − λ+ ν ′ − p− 1 + l

) α−1∏
w=0

ρ
′+
ν′−1−w〈ν

′ − α,λ′|xk+ν−p|0,λ〉, (23)

where

α−1∏
w=0

ρ′+ν′−1−w = (−1)α
[

ν ′!Γ(ν ′ + 2λ′)
Γ(ν ′ + 2λ′ − α)(ν ′ − α)!

]1/2

. (24)

At this point, and without any loss of generality we get, by making ν = 0 in
equation (20) and ν ′ = 0 in equation (23), respectively,

〈ν ′,λ′|xk|0,λ〉= (−1)ν
′
(

Γ(2λ′)
ν ′!Γ(ν ′ + 2λ′)

)1/2 ν′∑
p=0

Cν
′
p (σ′ − σ0)ν

′−p

× Γ(k + λ− λ′)
Γ(k + λ− λ′ − p)

〈0,λ′|xk+ν′−p|0,λ〉 (25)

and

〈0,λ′|xk|ν,λ〉= (−1)ν
(

Γ(2λ)
ν!Γ(ν + 2λ)

)1/2 ν∑
p=0

Cνp (σ − σ′0)ν−p

× Γ(k + λ′ − λ)
Γ(k + λ′ − λ− p)

〈0,λ′|xk+ν−p|0,λ〉, (26)

where the former matrix element is given by

〈0,λ′|xk|0,λ〉=C0,λ′C0,λΓ(k + λ′ + λ+ 1)
(
σ′0 + σ0

)−(k+1+λ′+λ)

×
(
2σ′0
)λ′+1/2(

2σ0
)λ+1/2

(27)

with σ′0 = γ2/λ′, σ0 = γ2/λ and C0,y = [Γ(2y + 1)]−1/2 , where y = λ′ or y = λ.
Finally, by using the above relationships in equation (20) and equation (23) we

obtain the generalized closed form expression

〈ν ′,λ′|xk|ν,λ〉 =
1(

σ′0 + σ0
)k ( 2σ′0

σ′0 + σ0

)λ′+1/2( 2σ0

σ′0 + σ0

)λ+1/2

× (−1)ν
′+ν

(Γ(2λ′ + 1)Γ(2λ+ 1))1/2

(
ν!Γ(ν + 2λ)Γ(2λ′)Γ(2λ)

ν ′!Γ(ν ′ + 2λ′)

)1/2



278 J. Morales et al. / Kratzer potential integrals

×
ν′∑
p=0

p∑
α=0

ν−α∑
l=0

Cν
′
p C

p
αC

ν−α
l

(
σ′ − σ
σ′0 + σ0

)ν′+ν−p−α−l
×(−1)ν−α−l

Γ(k + λ− λ′ + ν − α)
Γ(k + λ− λ′ + ν − p)

Γ(k + λ′ + λ+ ν ′ + ν − p+ 1− α− l)
(ν − α)!Γ(ν + 2λ− α)

× Γ(k + λ′ − λ+ ν ′ − p)
Γ(k + λ′ − λ+ ν ′ − p− l) . (28)

At this point, it should be noticed that the algebraic procedure as well as the
closed formula for the calculation of the Kratzer potential matrix elements displayed
above is rather complicated. However, the usefulness of the above equations becomes
clear when we consider some particular cases as shown next.

3. Useful particular results

In order to compare equation (28) with already published results [1,12,14], we
are going to consider briefly the corresponding analytical evaluation of xk Kratzer
potential integrals. In fact, by using the Kratzer wavefunctions

Rν,λ(r) =
2σ
r
χν,λ(2σr), (29)

where

χν,λ(z) = (2σ)−1/2Cν,λe(−z/2)zλL2λ−1
ν (z)

and

Cν,λ =

(
ν!

2(ν + λ)Γ(ν + 2λ)

)1/2

,

one gets

〈ν ′,λ′|rk|ν,λ〉= (2σ′)λ
′+1/2(2σ)λ+1/2Cν′,λ′Cν,λ

×
∫ ∞

0
e−r(σ′+σ)rk+λ′+λL2λ′−1

ν′ (2σ′r)L2λ−1
ν (2σr) dr. (30)

It is interesting to point out that the integral in the above equation can be straight-
forwardly calculated if we consider the expansion definition for Laguerre polynomials,

Lλν (x) =
Γ(ν + λ+ 1)

ν!

ν∑
j=0

(−1)j

Γ(λ+ 1 + j)
Cνj x

j . (31)

That is, we obtain

〈ν ′,λ′|xk|ν,λ〉 =

(
2σ′

σ′ + σ

)λ′+1/2( 2σ
σ′ + σ

)λ+1/2 1
(σ′ + σ)k
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× Cν′,λ′Cν,λ
Γ(ν ′ + 2λ′)

ν ′!
Γ(ν + 2λ)

ν!

×
ν′∑
i=0

ν∑
j=0

Cν
′
i C

ν
j

Γ(k + λ′ + λ+ 1 + i+ j)
Γ(2λ′ + i)Γ(2λ+ j)

(
−2σ′

σ′ + σ

)i( −2σ
σ′ + σ

)j
. (32)

Finally, making use of the generalized hypergeometric function [4]

F2
(
α,β,β′, γ, γ′;x, y

)
=
∞∑
i=0

∞∑
j=0

(α)i+j (β)i(β′)j
(γ)i(γ′)ji!j!

xiyj

it can be shown that for β = −ν and β′ = −ν ′ integers, sums in above F2 are finite
for which equation (32) trasforms to

〈ν ′,λ′|xk|ν,λ〉 =

(
2σ′

σ′ + σ

)λ′+1/2( 2σ
σ′ + σ

)λ+1/2 Cν′,λ′Cν,λ

(σ′ + σ)k

×Γ(ν + 2λ)
Γ(ν ′ + 2λ′)Γ(k + λ′ + λ+ 1)

ν!ν ′!Γ(2λ′)Γ(2λ)

×F2

(
k + λ′ + λ+ 1,−ν,−ν ′, 2λ, 2λ′;

2σ
σ′ + σ

,
2σ′

σ′ + σ

)
. (33)

At this point, it is interesting to note that this general expression contains as
particular case, for k = 1 and λ = λ′, the Tugov’s formula [13] for the calculation of
dipolar matrix elements

〈ν ′,λ′|x|ν,λ〉 =
4λ

γ4

(
(ν + λ)(ν ′ + λ)

)λ+2

((ν + λ) + (ν ′ + λ))2λ+2

(
Γ(ν ′ + 2λ)Γ(ν + 2λ)

ν!ν ′!

)1/2

×Γ(2λ+ 2)

(Γ(2λ))2 F2

(
2λ+ 2,−ν,−ν ′, 2λ, 2λ;

2σ
σ′ + σ

,
2σ′

σ′ + σ

)
, (34)

which was obtained by means of a non operational method based on the use of the
internuclear potential Green’s functions [2].

With this important application, besides the fact that equation (32) and equa-
tion (33) contain only two independent sums, it seems at first glance that these closed
formulae derived following the non operational procedure of Bastida et al. [1], Walden-
strom and Naqvi [14], Secrest [12] as well as Bunkin and Tugov [2] is simpler than
our proposed relationship, equation (28), obtained by means of an algebraic approach
or operational method. However, there are some advantages associated with our pro-
cedure and formulae that should be pointed out. For example, the succesfulness of the
displayed non operator procedure is conditioned by the fact that both wavefunctions
are undisplaced, which means that they can be interpreted as being associated to the
same potential and by consequence as one-center matrix elements. On the contrary,
the proposed algebraic approach can consider displaced potential wavefunctions which
is equivalent to establishing real two-center integrals.
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With reference to particular cases, in order to compare the closed form equations
that come from different approaches, we are going to consider some matrix elements.
For example, the closed form expression for the calculation of all diagonal Kratzer
potential integrals is given from the non operator method by

〈ν,λ|xk|ν,λ〉=
(

1
2σ

)k Γ(ν + 2λ)
2ν!(ν + λ)

×
ν∑
i=0

ν∑
j=0

Cνi C
ν
j (−1)i+j

Γ(k + 2λ+ 1 + i+ j)
Γ(2λ+ i)Γ(2λ+ j)

(35)

while the corresponding one deduced from the algebraic approach is

〈ν,λ|xk|ν,λ〉=
(

1
2σ0

)k Γ(2λ)Γ(k + 2λ+ 1)
Γ(2λ+ 1)

×
ν∑

α=0

Cνα
Γ(k + ν − α)

Γ(k − ν + α)Γ(ν + 2λ− α)(ν − α)!
. (36)

Clearly this last equation is simpler than equation (35) because equation (36)
contains only one summation.

Another useful result concerns non diagonal matrix elements when k = 0 which
give rise, respectively, from the analytical result, to

〈ν ′,λ′|ν,λ〉 =

(
2σ′

σ′ + σ

)λ′+1/2( 2σ
σ′ + σ

)λ+1/2

×Cν′,λ′Cν,λ
Γ(ν ′ + 2λ′)

ν ′!
Γ(ν + 2λ)

ν!

×
ν′∑
i=0

ν∑
j=0

Cν
′
i C

ν
j

Γ(λ′ + λ+ 1 + i+ j)
Γ(2λ′ + i)Γ(2λ + j)

(
−2σ′

σ′ + σ

)i( −2σ
σ′ + σ

)j
, (37)

and from the algebraic approach to

〈ν ′,λ′|ν,λ〉 =

(
2σ′0

σ′0 + σ0

)λ′+1/2( 2σ0

σ′0 + σ0

)λ+1/2 (−1)ν
′+ν

(Γ(2λ′ + 1)Γ(2λ+ 1))1/2

×
(
ν!Γ(ν + 2λ)Γ(2λ′)Γ(2λ)

ν ′!Γ(ν ′ + 2λ′)

)1/2 ν′∑
p=0

p∑
α=0

ν−α∑
l=0

Cν
′
p C

p
αC

ν−α
l

(
σ′ − σ
σ′0 + σ0

)ν′+ν−p−α−l
× (−1)ν−α−l

Γ(λ− λ′ + ν − α)
Γ(λ− λ′ + ν − p)

Γ(λ′ + λ+ ν ′ + ν − p+ 1− α− l)
(ν − α)!Γ(ν + 2λ− α)

× Γ(λ′ − λ+ ν ′ − p)
Γ(λ′ − λ+ ν ′ − p− l) , (38)
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which are, in principle, not very similar. This makes it difficult to decide which one can
be considered as an improvement over the other. However, in this respect it is important
to note that equation (38) gives rise straightforwardly to 〈ν,λ|ν,λ〉 = 1 which is
the normalization condition between Kratzer wavefunctions, while equation (37) that
comes from the non operator method, leads to

〈ν,λ|ν,λ〉 =
Γ(ν + 2λ)
2ν!(ν + λ)

ν∑
i=0

ν∑
j=0

Cνi C
ν
j (−1)i+j

Γ(2λ+ 1 + i+ j)
Γ(2λ+ i)Γ(2λ + j)

, (39)

from where it is not evident orthogonality. Furthermore, the algebraic approach leads
to special cases

〈ν ′,λ′|0,λ〉= (−1)ν
′
(

Γ(2λ′)
ν ′!Γ(ν ′ + 2λ′)

)1/2 Γ(λ− λ′)
(Γ(2λ′ + 1)Γ(2λ+ 1))1/2

×
(

2σ′0
σ′0 + σ0

)λ′+1/2( 2σ0

σ0 + σ′0

)λ+1/2

×
ν′∑
p=0

Cν
′
p

(
σ′ − σ
σ′0 + σ0

)ν′−p Γ(λ+ λ′ + 1 + ν ′ − p)
Γ(λ− λ′ − p)

(40)

and

〈0,λ′|ν,λ〉= (−1)ν
(

Γ(2λ)
ν!Γ(ν + 2λ)

)1/2 Γ(λ′ − λ)

(Γ(2λ+ 1)Γ(2λ′ + 1))1/2

×
(

2σ0

σ0 + σ′0

)λ+1/2( 2σ′0
σ′0 + σ0

)λ′+1/2

×
ν∑
p=0

Cνp

(
σ − σ′
σ0 + σ′0

)ν−p Γ(λ′ + λ+ 1 + ν − p)
Γ(λ′ − λ− p)

, (41)

which are equations that can be considered as an improvement to the corresponding
formulae

〈ν ′,λ′|0,λ〉 =

(
2σ′

σ′ + σ0

)λ′+1/2( 2σ0

σ′ + σ0

)λ+1/2 Γ(ν ′ + 2λ′)
ν ′!

Cν′,λ′C0,λ

×
ν′∑
i=0

Cν
′
i

Γ(λ+ λ′ + 1 + i)
Γ(2λ′ + i)

(
−2σ′

σ′ + σ0

)i
(42)

and

〈0,λ′|ν,λ〉=
(

2σ
σ + σ′0

)λ+1/2( 2σ′0
σ + σ′0

)λ′+1/2 Γ(ν + 2λ)
ν!

C0,λ′Cν,λ
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×
ν∑
i=0

Cνi
Γ(λ′ + λ+ 1 + i)

Γ(2λ+ i)

(
−2σ
σ + σ′0

)i
, (43)

that come from the non-algebraic procedure. In fact, although both sets of above
equations lead, as expected, to the same result of lower matrix element

〈0,λ′|0,λ〉 =

(
2σ′0

σ′0 + σ0

)λ′+1/2( 2σ0

σ′0 + σ0

)λ+1/2 Γ(λ+ λ′ + 1)
(Γ(2λ+ 1)Γ(2λ′ + 1))1/2

, (44)

however, the particular case of λ = λ′ is given, from the equation derived algebraically,
by

〈ν ′,λ|0,λ〉= (−1)ν
′
(

Γ(2λ)
ν ′!Γ(ν ′ + 2λ)

)1/2 Γ(2λ+ ν ′ + 1)
Γ(2λ+ 1)

(
σ′ − σ0

σ′0 + σ0

)ν′
, (45)

〈0,λ|ν,λ〉= (−1)ν
(

Γ(2λ)
ν!Γ(ν + 2λ)

)1/2 Γ(2λ+ ν + 1)
Γ(2λ+ 1)

(
σ − σ′0
σ′0 + σ0

)ν
, (46)

which are equations clearly more compact than the corresponding closed formulae
analytically obtained:

〈ν ′,λ|0,λ〉=
(

4σ′σ0

σ′ + σ0

)λ+1/2( Γ(ν ′ + 2λ)
2(ν ′ + λ)ν ′!Γ(2λ+ 1)

)1/2

×
ν′∑
i=0

Cν
′
i

Γ(2λ+ 1 + i)
Γ(2λ+ i)

(
−2σ′

σ′ + σ

)i
(47)

or its symmetric

〈0,λ|ν,λ〉=
(

4σσ′0
σ + σ′0

)λ+1/2( Γ(ν + 2λ)
2(ν + λ)ν!Γ(2λ+ 1)

)1/2

×
ν∑
i=0

Cνi
Γ(2λ+ 1 + i)

Γ(2λ+ i)

(
−2σ
σ + σ′

)i
. (48)

In any case, the above set of equations are used in the calculation of particular
cases of Franck–Condon factors.

4. Concluding remarks

With the present work we provide new closed formulas for the calculation of
Kratzer potential matrix elements derived via an algebraic (ladder operator) approach
that leads advantageously to improved equations when compared with the correspond-
ing ones already published. Also, the matrix elements derived using ladder properties
of the raising and lowering Kratzer operators contain some useful particular cases such
as simplified equations for the calculation of Franck–Condon factors for undisplaced
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potentials. Thus, the proposed approach can be easily extended to consider algebraic
representations of other potential as well as real two-center matrix elements.
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Scientific Project Number 5-4840E.

References
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